First-Principles Study of the Structural, Elastic, and Mechanical Properties of Ni3Ga Compound under Pressure
نویسنده
چکیده
There was employed the density functional theory plane-wave pseudopotential method with local density approximation and generalized gradient approximation to investigate the structural, elastic and mechanical properties of the intermetallic compound Ni3Ga. The calculated equilibrium lattice constant and bulk modulus are in good agreement with the experimental values. The elastic constants were determined from a linear t of the calculated stress strain function according to Hooke's law. From the elastic constants, the bulk modulus B, anisotropy factor A, shear modulus G, Young's modulus E and Poisson's ratio υ for Ni3Ga compound are obtained. Our results for the bulk modulus B, anisotropy factor A, shear modulus G, Young's modulus E and Poisson's ratio υ are consistent with the experimental values. The sound velocities and the Debye temperature are also predicted from elastic constants. The dependences of the elastic and mechanical properties of Ni3Ga compound on pressure were investigated for the rst time. It was found that the cubic Ni3Ga compound is mechanically stable according to the elastic stability criteria and it is not elastically isotropic. By analyzing the ratio B/G, it was concluded that Ni3Ga compound is ductile in nature.
منابع مشابه
Elastic constants and their variation by pressure in the cubic PbTiO3 compound using IRelast computational package within the density functional theory
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} In this paper, we study the structural and electronic properties of the cubic PbTiO3 compound by using the density functional the...
متن کاملSemi Analytical Analysis of FGM Thick-Walled Cylindrical Pressure Vessel with Longitudinal Variation of Elastic Modulus under Internal Pressure
In this paper, a numerical analysis of stresses and displacements in FGM thick-walled cylindrical pressure vessel under internal pressure has been presented. The elastic modulus is assumed to be varying along the longitude of the pressure vessel with an exponential function continuously. The Poisson’s ratio is assumed to be constant. Whereas most of the previous studies about FGM thick-walled p...
متن کاملMultiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...
متن کاملAnalytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non-axisymmetric Internal Pressure
In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...
متن کاملElastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius
Based on the Frobenius series method, stresses analysis of the functionally graded rotating thick cylindrical pressure vessels (FGRTCPV) are examined. The vessel is considered in both plane stress and plane strain conditions. All of the cylindrical shell properties except the Poisson ratio are considered exponential function along the radial direction. The governing Navier equation for this pro...
متن کامل